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ABSTRACT

Compared to nonverbal cognition such as executive or memory functions, language-related cognition generally appears to re-
main more stable until later in life. Nevertheless, different language-related processes, for example, verbal fluency versus vocab-
ulary knowledge, appear to show different trajectories across the life span. One potential explanation for differences in verbal
functions may be alterations in the functional and structural network architecture of different large-scale brain networks. For
example, differences in verbal abilities have been linked to the communication within and between the frontoparietal (FPN) and
default mode network (DMN). It, however, remains open whether brain connectivity within these networks may be informative
for language performance at the individual level across the life span. Further information in this regard may be highly desirable
asverbal abilities allow us to participate in daily activities, are associated with quality of life, and may be considered in preventive
and interventional setups to foster cognitive health across the life span. So far, mixed prediction results based on resting-state
functional connectivity (FC) and structural connectivity (SC) data have been reported for language abilities across different sam-
ples, age groups, and machine-learning (ML) approaches. Therefore, the current study set out to investigate the predictability of
verbal fluency and vocabulary knowledge based on brain connectivity data in the DMN, FPN, and the whole brain using an ML
approach in a lifespan sample (N=717; age range: 18-85) from the 1000BRAINS study. Prediction performance was, thereby,
systematically compared across (i) verbal [verbal fluency and vocabulary knowledge] and nonverbal abilities [processing speed
and visual working memory], (ii) modalities [FC and SC data], (iii) feature sets [DMN, FPN, DMN-FPN, and whole brain], and (iv)
samples [total, younger, and older aged group]. Results from the current study showed that verbal abilities could not be reliably
predicted from FC and SC data across feature sets and samples. Thereby, no predictability differences emerged between verbal
fluency and vocabulary knowledge across input modalities, feature sets, and samples. In contrast to verbal functions, nonverbal
abilities could be moderately predicted from connectivity data, particularly SC, in the total and younger age group. Satisfactory
prediction performance for nonverbal cognitive functions based on currently chosen connectivity data was, however, not en-
countered in the older age group. Current results, hence, emphasized that verbal functions may be more difficult to predict from
brain connectivity data in domain-general cognitive networks and the whole brain compared to nonverbal abilities, particularly
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executive functions, across the life span. Thus, it appears warranted to more closely investigate differences in predictability be-

tween different cognitive functions and age groups.

1 | Introduction

As the aging population continues to grow, research on the age-
related decline of cognitive abilities has become increasingly
important. To this end, studies have shown that not all older
adults are affected in the same way and that different cognitive
domains decline at different rates (Hedden and Gabrieli 2004;
Salthouse 2004; Salthouse et al. 2003). While executive functions,
for example, processing speed, working memory, and attention,
are affected more severely and decline earlier in life, language-
related cognition generally appears to remain more stable
until later in life (Hedden and Gabrieli 2004; Salthouse 2004).
Nevertheless, it has also been shown that not all language-
related processes may be equally affected by the aging process
(Baciu et al. 2016; Gonzalez-Burgos et al. 2019). While semantic
and vocabulary knowledge appear more resistant to decline and
may even improve with age, verbal fluency tends to be more vul-
nerable to the aging process (Gonzalez-Burgos et al. 2019).

Generally, language functions seem to be grounded in an ex-
tended network of frontal, parietal, and temporal regions and to
be mainly left lateralized in the great majority of the population
(Friederici and Gierhan 2013; Nakajima et al. 2020; Tomasi and
Volkow 2020). In this regard, individual areas do not act in isola-
tion, but are embedded in large-scale brain networks to give rise to
complex cognitive abilities through coordinated activity with other
brain regions (Binder et al. 1997; Gaudet et al. 2020; Tremblay and
Dick 2016; Turken and Dronkers 2011; Turker et al. 2023). In this
context, regions are functionally, via functional connectivity (FC),
or anatomically, via structural connectivity (SC), linked to other
parts of the brain to form brain networks subserving higher cogni-
tive functioning, including language functions.

Beyond the contribution of core language areas, for example,
inferior frontal gyrus, posterior temporal cortex, several brain
regions have been implicated in support of language functions
(Liu et al. 2022; Tremblay and Dick 2016). This extended net-
work seems to additionally comprise, for example, the middle
and superior frontal gyri, the insula, the cingulate cortex, and
parietal regions (Arrigo et al. 2024), as well as the precuneus
(Wagner et al. 2014). Additional activations during verbal tasks,
especially in the frontal cortices, have been reported in older
adults, with right hemispheric activations possibly related to per-
formance loss (Meinzer et al. 2009, 2012). In contrast, the right
fronto-parietal network (FPN) has specifically been suggested
to support executive abilities to compensate successfully for age-
related verbal performance loss (Gonzalez-Burgos et al. 2019,
2020). Furthermore, engagement of right hemispheric regions
related to verbal fluency is not always restricted to older adults
but can also be found in younger adults (Arrigo et al. 2024;
Martin et al. 2022) and might be more related to performance
differences than age itself, hinting at a possible importance of
right hemispheric contributions.

To shed further light on this, the involvement of additional,
more domain-general but functionally linked cognitive systems

has been discussed (Dick et al. 2010; Liu et al. 2022; Tremblay
and Dick 2016). Here, (posterior) parts of the cingulate cortex,
the precuneus, and other regions belonging to the Default mode
Network (DMN) seem to be particularly supportive (Paschoal
et al. 2021). On the one hand, it has been discussed that the
DMN enables language comprehension actively by building a
cooperative system with core language and executive functions
(Liu et al. 2022), as well as verbal fluency by its strong coupling
with core language regions during task performance. On the
other hand, its anticorrelated or deactivated state during specific
cognitive tasks might facilitate successful language processing
(Anticevic et al. 2012).

Furthermore, a recent cross-sectional study (Stumme et al. 2020)
from our group found specifically FC between the FPN and the
DMN associated with a cognitive component reflective of ver-
bal fluency and memory performance in older adults (age range:
55-85) from the 1000BRAINS study. Using the modality of brain
structure, another study (Peitz et al. 2023) found longitudinal
evidence for the association between gray matter volume of the
FPN and language abilities, that is, bilingualism, across the life
span (age range: 19-79), both lending support to the involvement
of the DMN and FPN in language abilities.

Especially in older adults, more than just the classic perisylvian
language network appears to contribute to language abilities.
Research findings challenge the traditional view of a clearly re-
stricted core language network and instead point to a network-
based approach in which multiple systems contribute to
language performance (Fedorenko and Thompson-Schill 2014).
On the one hand, the classical language system is extended by
additional frontal (e.g., middle and superior frontal lobes) and
parietal regions of the FPN. On the other hand, networks that
control supporting cognitive processes, such as the right FPN
and the DMN, could play a role. Therefore, functional network
patterns of both networks—the DMN and FPN—including their
right hemispheric homologs may provide valuable information
about cognitive language performance across the lifespan.

Nevertheless, it should also be acknowledged that language
processing is not only subserved by activity in the grey matter,
but also crucially depends on white matter pathways, that is, SC
(Friederici and Gierhan 2013; Turken and Dronkers 2011). For
instance, SC measured by streamline counts in the whole brain,
the cingulum bundle, the fornix, and left superior longitudinal
fascicle III have been associated with language performance, for
example, picture vocabulary score and semantic memory task,
in two large samples of young adults from the Human connec-
tome project (HCP) (Lin et al. 2020; Zekelman et al. 2022). Thus,
it appears that SC in fibre bundles, which have been associated
with the DMN and FPN, appears to be linked to verbal perfor-
mance (Hirsiger et al. 2016; Li et al. 2016). Along the lines in
neurodegenerative disorders, diffusion-weighted imaging mea-
surements, for example, fractional anisotropy, radial diffusivity,
and streamline counts from the cingulum and parahippocam-
pal bundles were found to predict performance in memory,
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attention, working memory (WM) and, importantly, language in
mild Alzheimer's Disease (AD) (Weiler et al. 2014) as well as to
differentiate between patients with mild cognitive impairment
who convert to AD and nonconverters (Magalhaes et al. 2022).
Hence, it can be argued that not only FC, but also SC of specific
fiber bundles that are part of networks relevant for language, in-
cluding the DMN and FPN, may be linked to language abilities
across the lifespan in both health and disease. Thus, both FC
and SC may be potentially informative of differences in verbal
abilities at the individual level across the lifespan.

Language functions are essential for us to engage with and navi-
gate the world. They have not only been related to other cognitive
functions and been implicated in neurodegenerative disorders,
but have also been linked to levels of quality of life across the
life span (Beltrami et al. 2018; Boyle et al. 2021; Constantinidou
et al. 2015; Eyigoz et al. 2020; Orimaye et al. 2017). Thus, main-
tenance of verbal abilities and the prevention of significant
decline in these abilities appears similarly desirable to that of
nonverbal abilities, for example, executive functions (Heckner
et al. 2023), over time. A first step in this direction would be the
development of a marker that captures language functioning in
different age groups to prospectively identify those who might
be most vulnerable to decline, enabling early interventions
(Tomasi and Volkow 2020). In this context, machine learning
(ML) approaches may be useful tools to address this task given
their ability to deal with high-dimensional data and to derive
individual-level predictions (Davatzikos 2019; Orru et al. 2012;
Varoquaux and Thirion 2014). Initial studies so far have reported
mixed prediction results of verbal abilities for particular age
groups, modalities, and functions. For example, language func-
tions, such as reading and vocabulary comprehension, could be
successfully predicted from task-based and resting-state func-
tional connectivity, particularly in the DMN and FPN, in large
samples of young adults using different ML approaches (Jiang
et al. 2020b; Tomasi and Volkow 2020). In turn, findings from
two multimodal studies in young adults from the HCP showed
that FC and SC data may predict crystallized abilities, that is,
picture vocabulary performance and reading recognition, better
than fluid abilities, that is, executive function and processing
speed (Dhamala et al. 2021; Rasero et al. 2021). Turning to find-
ings in older adults, Kwak et al. (2021) showed that performance
on a semantic fluency task could be predicted from FC measures
with accuracies ranging between r=0.18-0.28 in a large sample
from the OASIS-3 project (age range: 42-95years).

In contrast, language abilities (r=0.12-0.23) could be predicted
to a smaller degree compared to executive functions and at-
tention (r=0.25-0.37) from SC in two large cohorts across the
life span, that is, BARBI and HCP-A (age range: 36-100) (Feng
et al. 2022). Along these lines, prior findings from our group
suggested that different domain-specific cognitive profiles, in-
cluding a verbal memory and language component, could be pre-
dicted only to a limited extent from FC estimates alone and from
multimodal imaging data, that is, grey matter volume, FC, and
SC estimates, in older adults from the 1000BRAINS study (age
range: 55-85) (Krdmer et al. 2023, 2024). Thus, it appears that
specific language abilities may be successfully predicted from
specific modalities and in specific age groups. Nevertheless, it
remains challenging to draw more general conclusions and rec-
oncile the different findings across studies due to differences in

language targets, age groups, modalities, and ML frameworks
used. To generalize findings and make more universal claims
about the predictability of language functions from imaging
data across the life span, it seems warranted to address this topic
in a common ML framework and cohort and to systematically
compare prediction performance for verbal abilities across age
groups, imaging modalities, and feature sets.

The current study thus aimed at an in-depth investigation of
the predictability of language abilities from structural and func-
tional connectivity data across the life span and different analytic
choices using an ML approach. Specifically, it set out to examine
if predictability differences emerge between (a) verbal fluency
and vocabulary knowledge, (b) FC and SC, (¢) a network-specific,
that is, FPN and DMN, and whole-brain approach, as well as (d)
the whole life span, younger and older adults across different ML
algorithms in a large sample from the 1000BRAINS study.

2 | Methods
2.1 | Study Population

The research question was investigated in a sample from the
1000BRAINS study (Caspers et al. 2014), which is a population-
based cohort study that recruited 1314 subjects from the
German Heinz Nixdorf Recall Study and the Heinz Nixdorf
Recall MultiGeneration Study (Schmermund et al. 2002). The
main analysis was conducted in a subset of 717 participants
(327 females; Mean,, =59.1; SD,,,=13.6; age range: 18-85).
Participants were excluded from the study due to the following
criteria: (i) missing values for demographic data (6), (ii) missing
DemTect score (18), (iii) at least one or more missing scores on
the predicted cognitive tasks (46), (iv) DemTect Score <8 indi-
cating signs of dementia or mild cognitive impairment (Kalbe
et al. 2004) (9), (v) missing brain data, preprocessing failure, or
abnormalities in imaging data detected by quality control (280),
(vi) outlier scores defined as participants scoring +3 SD from
the mean in at least one of the cognitive variables (35), and (vii)
family relationship (in case of more than one person per family,
only one family member was included in the current analysis)
(203). To investigate the impact of aging on the predictability
of language functions, subjects were divided into two groups
based on age, that is, younger (<60years of age; N=311, 142
females, Meanage =46.9%10.9, Mean g, =7.2%1.7) and older
(>60years of age, N=406, 185 females, Mean,, =68.4+5.7,
Meanq.,=6.5%2.0). The cut-off at age 60 between the two
groups was chosen as performance loss within the chosen lan-
guage tasks appeared around the age of 60. This content-related
decision was based on a prior analysis to capture the time point at
which age-related decline in language functions starts to emerge.
The study protocol of 1000BRAINS was approved by the ethics
committee of the University of Duisburg-Essen, and all subjects
provided written informed consent before inclusion. The study
procedures comply with the Declaration of Helsinki (Table 1).

2.2 | Cognitive Performance

All subjects underwent extensive neuropsychological testing
through their participation in the 1000BRAINS study (Caspers
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TABLE1 | Demographic information of the total, old, and young sample.
N Age (SD) Age range Edu (SD) DemTect (SD)
Total 717 (390M, 327F) 59.1 (13.6) 18-85 6.8 (1.9) 15.3(2.4)
Younger 311 (169 M, 142F) 46.9 (10.9) 18-59 7.2 (1.7) 15.5(2.4)
Older 406 (221 M,185F) 68.4(5.7) 60-85 6.5(2.0) 15.1 (2.3)

Note: Edu=education level measured by ISCED; F =females; M = males.

et al. 2014). For the investigation of verbal functioning, we fo-
cused on vocabulary knowledge, which taps into crystallized
intelligence, and verbal fluency, which addresses more fluid
abilities. In this context, it should be stressed that these two
functions may be differentially impacted by the aging process.
Fluid abilities, for instance, verbal fluency, appear to be more
strongly impacted by aging than crystallized abilities such as
vocabulary (Baciu et al. 2016; Gonzalez-Burgos et al. 2019). The
Word-hoard-test was used as a measure of vocabulary (VOC)
knowledge and word recognition (Schmidt and Metzler 1992).
In the test, participants were asked to find one meaning-
ful word among five nonsense, distractor words. For the op-
erationalization of language production, the Regensburger
Wortfliissigkeitstest (Aschenbrenner et al. 2000) was used, to
assess verbal fluency. Both phonematic (PF) and semantic ver-
bal fluency (SF) were measured. In the semantic condition, par-
ticipants were asked to name as many words as possible within
the category professions (in German: Berufe) in two minutes. In
the phonematic condition, subjects were required to produce as
many German words as possible beginning with the letter B in
2min. The two conditions, that is, PF and SF, were used sepa-
rately as targets in the ML pipeline due to differential behavior
throughout the aging process and their involvement of distinct
brain regions (Gonzalez-Burgos et al. 2019; Vigneau et al. 2011,
Wagner et al. 2014). To capture general verbal fluency abilities,
a combined language production score, that is, a verbal fluency
(VF) score, was calculated as the arithmetic mean of the PF and
SF scores. Along the same lines, a composite language perfor-
mance score (VER) was derived by combining performance on
the vocabulary and verbal fluency tests to assess general lan-
guage abilities, which feature both crystallized and fluid abili-
ties. Finally, all scores were standardized and transformed into
Z-scores for each sample separately.

To evaluate if prediction results are specific to verbal functions,
we also investigated the predictability of two nonverbal cog-
nitive measures, that is, processing speed and visual working
memory, which have been frequently reported to be success-
fully predicted from connectivity data across various samples
(Avery et al. 2020; Dhamala et al. 2021; Gao et al. 2020; Pldschke
et al. 2020). As a measure of processing speed, the Trail Making
Test A (TMT-A) was chosen, in which participants are asked to
connect numbers with lines in ascending order, and the time
to complete the task is taken (Morris et al. 1989). For interpre-
tation purposes, scores were inverted to indicate higher scores
equal better performance as well as standardized using Z-scores
similar to the language scores. Furthermore, we examined a
visual working memory score (vWM) based on the arithmetic
mean of the performance on three different tasks, that is, Corsi
Block Tapping Test (CBTT), Benton Test (BT), and the Visual
Pattern Test (VPT) (Benton et al. 2009; Della Sala et al. 1997;

Schelling 1997). In the CBTT, participants are asked to repro-
duce a tapping sequence demonstrated by the researcher in re-
verse order (Schelling 1997). In the BT, participants are shown
20 geometric patterns and asked to reproduce those exactly from
memory (Benton et al. 2009). The performance score is mea-
sured as the number of errors. In the VPT, participants are asked
to reproduce a pattern of black and white squares arranged in a
matrix on a blank grid (Della Sala et al. 1997). The performance
score is represented by the number of correct solutions. Since
scales differed between the three tests, all scores were Z-score
normalized similar to the language scores. Scores on BT were
inverted, as higher scores indicated worse performance.

2.3 | MRI Data Acquisition

The 1000BRAINS data set comprises a detailed magnetic reso-
nance imaging (MRI) protocol with structural and functional
data. All MR imaging was performed using a 3 Tesla Siemens
Tim-TRIO scanner with a 32-channel head coil. Structural
scans include a 3D T1-weighted MPRAGE sequence and three
diffusion-weighted sequences. For the SC analysis, high-
angular resolution diffusion imaging (HARDI) data with the
following parameters were used: (i) 120 directions dataset, EPI,
TR=8s, TE=112ms, 13 b,-images (interleaved), 120 images
with b=2700s/mm?, voxel resolution =2.4 X 2.4 x2.4mm?3; (ii)
60 direction subset (out of 120 direction dataset), EPI, TR=6.3s,
TE=81ms, 7 b -images (interleaved), 60 images with b=1000s/
mm?, voxel resolution=2.4 X 2.4 X 2.4mm?3. For the surface re-
construction, a T1-weighted magnetization prepared rapid ac-
quisition gradient-echo (MPRAGE) anatomical scan was used:
176 slices, slice thickness = 1 mm, repetition time (TR) = 2250 ms,
echo time (TE)=3.03ms, field of view (FoV)=256 X256 mm?,
flip angle=9°, voxel resolution=1 X1 Xx1mm?> (Caspers
et al. 2014). Functional resting state scans were acquired for
about 11:30 min with closed eyes, while participants were asked
to let their minds wander without thinking of anything in par-
ticular. A blood-oxygen-level-dependent (BOLD) gradient echo
planar imaging (EPI) sequence with 36 transversally oriented
slices with the following specification was used: slice thick-
ness=3.1mm, TR=2200ms, TE=30ms, FoV=200 x 200 mm?,
voxel resolution =3.1 x 3.1 x 3.1mm? (Caspers et al. 2014).

2.4 | Image Processing to Derive Structural
Connectivity Data

T1-weighted imaging data was used to compute tissue probabil-
ity maps for grey matter, white matter, and corticospinal fluid
using the Computational Anatomy Toolbox (CAT12) (Gaser and
Dahnke 2016). By superimposing these three probability maps
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and thresholding them at 0.5, the brain could be extracted from
the T1 data. This brain image was then bias field corrected,
rigidly aligned to MNI152 template space, and resampled to
1.25mm isotropic voxel size. Diffusion MRI data was corrected
for eddy current and motion artifacts (Andersson et al. 2016)
and visually quality controlled for ghosting, remaining signal
dropout, and noisy data. Based on Wells et al. (1996), dMRI-T1
alignment was performed by extracting the first bO-images from
each dMRI data with b1000 and b2700 and rigidly aligning them
to the T1 dataset using mutual information as a cost function.
Consequently, there were two separately registered diffusion
images for the two b-values. Anisotropic Power Maps (APM;
Dell'Acqua et al. 2014) were calculated as a basis for image reg-
istration. These APMs were subsequently used to compute the
nonlinear transformation from diffusion to anatomical space,
as well as to transform the tissue probability maps to diffu-
sion space. After the bl000 and b2700 data sets were merged
into one, they were corrected for different echo times through
a voxel-wise multiplication of the b2700 data with the ratio of
the nondiffusion-weighted data. The MRtrix software (Tournier
et al. 2012) was used for local modeling and probabilistic
streamline tractography. Constrained Spherical Deconvolution
(CSD) was performed using multi-tissue CSD of multi-shell data
(Jeurissen et al. 2014), with all shells and a maximal spherical
harmonic order of 8. Using the probabilistic iFOD2 algorithm
with a maximal length of 250 mm and a cut-off value of 0.06, 10
million streamlines were computed for each subject.

2.5 | Image Processing for Functional
Connectivity Data

For functional image preprocessing, the FSL toolbox (Jenkinson
et al. 2012) was used. To remove the influence of the scanner
magnetization not being stabilized, the first four volumes for each
participant were discarded (Soares et al. 2016). In addition, func-
tional images were corrected for head movement by first aligning
all images to the first image. Based on this alignment, a mean
image was created, to which then all volumes were aligned. ICA-
based Automatic Removal Of Motion Artifacts (ICA-AROMA)
(Pruim et al. 2015), combined with global signal regression, was
used as a second step to identify all motion-related components.
After bandpass filtering (0.01-0.1Hz) to remove physiological
and scanner-related noise, fMRI images were registered to the
standard space template (MNI152) using the Nonlinear Image
Registration tool FNIRT. Furthermore, images were checked for
each participant's volume-wise severe intensity dropouts through
the generation of p values for spikes (Afyouni and Nichols 2018).
Participants for which more than 10% of a total of 300 volumes
were classed as dropouts were excluded. Finally, images were
checked for potential misalignment by using the “check sample
homogeneity using standard deviation across sample”-function
provided by the CAT12 toolbox (Gaser and Dahnke 2016).
Participants marked as outliers were excluded.

2.6 | Parcellation
The brain was parcellated into 400 cortical regions using the

Schaefer parcellation (Schaefer et al. 2018). These 400 parcels
can be assigned to the 7 network parcellation (Yeo et al. 2011),

comprising the visual (VN), sensorimotor (SMN), limbic (LN),
frontoparietal (FPN), default mode (DMN), dorsal (DAN), and
ventral attention network (VAN). For SC, nonlinear warps
of the spatial T1 registration were combined with an MNI152
template and distortion correction with the APMs to warp the
parcellation template to the individual diffusion space. Then,
streamline counts between each pair of nodes were converted
into weighting factors using SIFT-2 (Smith et al. 2015) as a cross-
sectional area multiplier, and all values were log,, transformed.
For FC, the mean time series of the preprocessed resting-state
fMRI data were extracted node-wise. Here, the time series of all
voxels corresponding to one node were averaged. To calculate
the connectivity between two nodes, Pearson's product-moment
correlation of the respective average BOLD time series was used.
The observed time series were randomized by taking its Fourier
transform, scrambling its phase, and then inverting the trans-
form. This whole procedure was repeated 1000 times, and a per-
mutation test was performed, aiming at minimizing the number
of edges caused by noise. Nonsignificant edges were set to 0. The
resulting matrix was Z-score transformed through Fisher r-to-z
transformation, with positive as well as negative correlations.
Both positive and negative edges were included as previous re-
search has suggested that despite problems with interpretability,
negative correlations may carry meaningful biological informa-
tion (Fox et al. 2005; Sporns and Betzel 2016). For more details
on connectivity data and the parcellation procedure, please refer
to Stumme et al. (2022). No further thresholding of the connec-
tivity matrices was performed.

Input to ML constituted the connectivity strength (FC: Fisher
r-to-z-transformation correlation coefficients; SC: SIFT-2 trans-
formed streamline counts) between each pair of nodes in differ-
ent feature sets. Due to the role of FPN and DMN in language
functions and their importance for the prediction of language
abilities, the current analysis focused on connectivity data from
these two language-related networks (i.e., FPN [52 nodes], DMN
[91 nodes]) in comparison to whole-brain connectome data
(Dick et al. 2010; Jiang et al. 2020a; Tomasi and Volkow 2020).
Connectivity data from both hemispheres was used in the
analyses. While a strong left hemispheric dominance has been
reported for language abilities, information from the right
hemisphere may also be relevant, particularly in light of aging
processes and compensatory mechanisms (Agarwal et al. 2016;
Cabeza 2002; Hoyau et al. 2018) as more deeply discussed in the
introduction. For a schematic overview of the parcellation (i.e.,
network plots) and a detailed description of the nodes, please
refer to the Supplement. In total, this resulted in the extraction
of the following four feature sets from the connectivity matri-
ces (including only information from the upper triangle of the
matrix; N(N-1)/2) for both modalities to be used in ML: (1) all
connections of the FPN (# of features =1326), (2) all connections
of the DMN (# of features =4095), (3) all connections in FPN and
DMN (# of features =10,153), and (4) connections in the whole
brain (# of features =79,800).

2.7 | ML Prediction Framework
To compare differences in predictability of distinct language

functions, an ML approach was used. A schematic overview
of the workflow is shown in Figure 1. All ML analyses were
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FIGURE1 | Schematic overview of workflow.

performed using the scikit-learn library (Version: 0.22.1) in
Python (Pedregosa et al. 2011). Prediction performance for verbal
(i.e., VF, SF, PF, VOC, VER) and nonverbal cognitive targets (i.e.,
PS, vWM) was examined for two modalities, that is, FC and SC,
and four feature sets, that is, DMN, FPN, FPNDMN, and WHOLE
brain (Figure 1B,C). Predictions for all combinations of input fea-
tures and targets were obtained separately for the total sample,
the younger, and older groups (Figure 1A). A focused compari-
son of two well-established ML algorithms was conducted as the
efficacy of different ML regression algorithms for different im-
aging modalities is still not fully elucidated (Jollans et al. 2019):
linear Support Vector Regression (SVR) and Elastic Net (EN) re-
gression, which were selected since they are commonly used in
the literature (Figure 1D) and include different degrees of feature
selection (Cui and Gong 2018; Jollans et al. 2019). While SVR
does not inherently include feature selection, EN incorporates an
embedded feature selection step through regularization (Jollans
et al. 2019). Thus, this allows the assessment of the impact of the
inclusion of a feature selection step on ML results. No additional
feature selection was performed. For each input-output combi-
nation, a separate SVR and EN model was trained.

For performance estimation, a repeated nested 5-fold cross-
validation (CV) was employed (5 repeats). All hyperparameters
were optimized within the inner CV loop (5-fold) to avoid data
leakage. The following hyperparameters were optimized in the
inner folds: (i) regularization parameter C for SVR {C: 10~ to
10%, 10 steps, logarithmic scale}, (ii) the regularization parameter
lambda, 4, and alpha, a, for EN (4:10~! to 102, 10 steps, a: 0.1-1, 10
steps). Prediction performance was assessed using the following
measures: the coefficient of determination (R?) and the Mean
Absolute Error (MAE). For completeness, the Pearson's correla-
tion between true and predicted scores (r) is reported as well and
can be found in the Supplement.

2.8 | Confounder Analyses

ML performance may be influenced by different confounding
variables, such as age, sex, and education. To assess their impact
on prediction results, additional analyses were performed in the
current study. Particularly, demographic variables were used
as extra features for our ML models following previous studies
(Dadi et al. 2021; Krdmer et al. 2024; Rasero et al. 2021). Thus,
we additionally investigated the predictability of cognitive tar-
gets from age, sex, and education alone as well as jointly with
brain connectivity data. Finally, we compared prediction perfor-
mance across these different models (see Figure 1D).

2.9 | Validation Analysis

To validate the ML-based prediction approach, two well-
investigated demographic variables, that is, age and sex, were
predicted from the brain data. Prior research has shown that
both variables could be reliably predicted from connectivity
data and, thus, may be used to assess whether similar results
can be achieved using the ML framework and the same data
(Dhamala et al. 2020; Lancaster et al. 2018; H. Li et al. 2018;
Liem et al. 2017; Vergun et al. 2013; Weis et al. 2020). Age and
sex predictions were carried out following the steps outlined in
the main analysis, with the only exception that for sex classi-
fication a Support Vector Classifier (SVC) and Ridge Classifier
were used, and ML performance was measured by accuracy
(Acc.). Furthermore, extreme group classifications were per-
formed based on FC and SC data (same as in the main analysis)
to validate our findings in the total, younger, and older samples.
Thereby, 25% of the top and lowest scorers on each language
variable were selected as extreme groups (Krdmer et al. 2024).
For additional information on the extreme groups, please refer
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TABLE 2 | Mean cognitive performance on all cognitive tests across samples.

SF PF vocC PS CBTT BT VPT
Total 25.6 (7.0) 19.4 (6.0) 31.6 (3.8) 34.4(11.9) 10.0 (1.1) 13.3(7.8) 8.6 (2.1)
Males 25.6 (7.4) 19.0 (5.9) 32.0 (3.8) 34.6 (12.5) 5.1(L1) 12.6 (7.8) 9.0 (2.0)
Females 25.5(6.4) 19.9 (6.1) 31.2(3.8) 34.2(11.1) 4.8(1.0) 14.3(7.8) 8.1(2.0)
Younger 27.6 (6.7) 20.4(5.9) 32.0 (3.5) 27.9(9.3) 5.4 (1.1) 9.3(6.2) 9.7(1.9)
Older 24.6 (6.8) 18.7 (6.0) 31.4 (4.0) 39.4(11.2) 4.7 (1.0) 16.5 (7.5) 7.7 (1.7)

Note: Standard deviations (SD) are displayed in parentheses.

TABLE 3 | Pearson's correlations between cognitive tests and demographic variables in the total sample.

SF PF VF voC VER PS CBTT BT VPT vWM
Age —0.25%* —0.14%* —0.23%* —-0.06 —0.20%* —0.59** —0.35%* —0.53** —0.53%* —0.58**
Edu 0.27** 0.23** 0.30%* 0.48** 0.42%* 0.19%* 0.17** 0.34%* 0.29** 0.33**

Note: **p <0.001.

to Table S4. As for the sex classification, classification accu-
racies were compared across SVC and a Ridge classifier. To
assess the influence of parcellation resolution on prediction
results, we also investigated ML performance based on FC
and SC data from a more fine-grained parcellation (i.e., 800-
node Schaefer parcellation). Analyses were carried out for all
cognitive variables in the total sample using network-specific
data and the same ML approach as in the main analysis. To
investigate the impact of hemispheric specialization (e.g., the
left hemisphere appears to be particularly important for lan-
guage functions) on prediction results, we also carried out ML
analyses for each cognitive variable based on connectivity data
from the left versus right hemisphere in the total, younger,
and older sample. As the total intracranial volume (TIV) may
have a substantial impact on prediction results, we further
performed analyses in which we controlled for estimated TIV.
Specifically, we regressed eTIV out of the target within the CV
scheme and re-ran all analyses of the main analyses (Krdmer
et al. 2024; Rasero et al. 2021). As eTIV was not available for all
participants, validation analyses were performed on a slightly
smaller sample (N =697, 323 females, Meanagez 59.18+£13.47,

Mean g, = 6.84 £ 1.89).

2.10 | Statistical Analyses

Statistical analyses were performed using R (R Core Team 2024)
and Python (version 3.12.4). Correlations between connectivity
data, cognitive tests as well as demographic variables were cal-
culated as Pearson's correlations, and independent samples t-
tests were used to investigate sex and age differences in cognitive
tests and connectivity in the total sample. To reduce the number
of statistical tests, connectivity data was aggregated into graph-
theoretical network parameters (Krimer et al. 2023; Stumme
et al. 2020). Specifically, within-network connectivity was extracted
for the DMN and FPN for both functional and structural connec-
tivity data. Additionally, between-network connectivity between
the DMN and FPN was computed and used in the statistical anal-
yses (Krdmer et al. 2023; Stumme et al. 2020). For a more detailed

description of the extraction of the network parameters, please
refer to Stumme et al. (2020).

3 | Results

3.1 | Relationship Between Cognitive
and Demographic Variables

Mean performance scores on cognitive tests can be found in
Table 2. Correlational analysis showed that performance on all
cognitive tests decreased significantly with age, except for vocab-
ulary (Table 3). The strongest negative associations with age were
found for nonverbal abilities, that is, processing speed and visual
working memory. Concerning language-related tests, semantic flu-
ency was most strongly negatively correlated with age (Tables 3, S5,
and Figure S2). Closer examination of age-test performance scatter
plots revealed that cognitive performance became more variable
with higher ages (Figure S2). From the scatter plots, no floor or ceil-
ing effects could be observed in the data (Figure S2). Independent
samples t-tests further support these results. Younger and older
participants significantly differed from each other in all cognitive
tests (#(628-710)=—-16.1 to —2.20, p<0.05; see Table S6). Older
participants showed lower performance on verbal and nonverbal
cognitive tests compared to younger participants (see Table S5 and
Figure S2). Education levels showed positive associations with test
performance, that is, better test performance was associated with
a higher educational level (Table 3). Males and females differed
significantly in their performance on the following cognitive tests:
VOC, CBTT, BT, and VPT (#(692-714) = —6.09 to —2.70, p <0.05). In
all cases, males outperformed females.

3.2 | Relationship Between Connectivity Data
and Cognitive Variables

Correlational analyses revealed that within-network functional
connectivity of the FPN was significantly correlated with ver-
bal abilities, processing speed, semantic, and verbal fluency (r
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ranges=0.09-0.11, p <0.05; Table S5 and Figure S3). All other
correlations for FC were found to be nonsignificant. In terms of
SC, within- and between-network connectivity of the FPN and
DMN were significantly associated with all cognitive variables
except for vocabulary (FPN) and phonematic fluency (DMN)
(r ranges=0.08-0.25, p<0.05; Table S3 and Figures S4 and
S5). In all cases, higher connectivity was associated with better
performance.

3.3 | Relationship Between Connectivity Data
and Age

Correlational analyses revealed that age was signifi-
cantly negatively correlated with all SC network parame-
ters (r ranges=-0.31 to —0.42, p<0.001, see Table S5 and
Figure S6). As such, within-network SC was found to decrease
with higher ages. No significant associations were discovered
for FC network parameters. An independent samples t-test
further corroborated these results. Significant differences be-
tween the younger and older groups were only encountered for
SC parameters (£(715)=7.7-10.6, p<0.001, Table S7). In this
context, older participants displayed lower connectivity both
within- and between-networks compared to younger partici-
pants (Table S7 and Figure S6).

3.4 | Prediction of Language Functions

The primary aim of this study was to examine the predictabil-
ity of verbal abilities, that is, verbal fluency and vocabulary,
from brain connectivity data, that is, FC and SC, across the
life span. Overall, prediction performance was found to be
very limited for the different language functions across ana-
lytic choices (Figure 2). In this context, models were found to
explain nearly no or no variance in the different language tar-
gets (SC: R? range =—0.15 to 0.03; FC: R? range =—0.24 to 0.03;
Figure 2, Tables S8-S15) across different groups, algorithms,
and feature sets. Furthermore, predictability did not seem to
differ between the total sample (R? range=— 0.13 to 0.03), the
older (R? range = — 0.15 to 0.01), and younger (R? range =—0.24
to 0.01) groups. Along the same lines, merging the three inves-
tigated language tests into a combined verbal score (Combined:
R? range =—0.12 to 0.03; individual: R? range=—0.24 to 0.03;
Figure 2, Tables S8-S15) and using whole-brain instead of
network-specific information (whole-brain: R? range=-0.16
to 0.02; network-specific: R? range=-0.24 to 0.03; Figure 2,
Tables S8-S15) resulted in similarly low results. Thus, it ap-
peared that language production and comprehension could not
be successfully predicted from brain connectivity data across
different age groups (i.e., total vs. older vs. younger), algorithms
(i.e., EN vs. SVR), feature sets (i.e., network-specific vs. whole
brain), and modalities (i.e., FC vs. SC) in the current sample
from the 1000BRAINS study.

3.5 | Comparison of Predictability Between
Nonverbal Cognitive Measures and Verbal Measures

To assess whether these results of nonreliable predictability of
language functions were specific to these functions, we further

investigated the predictability of nonverbal cognitive measures,
that is, processing speed and visual working memory, from con-
nectivity data across age groups, modalities, feature sets, and
algorithms. Across analytic options, nonverbal cognitive mea-
sures could be better predicted than verbal cognitive measures
(Nonverbal: R? range=—0.12 to 0.22; Verbal: R? range =—0.24
to 0.03; Figures 2 and 3, Tables S8-S15). Focusing on nonverbal
cognitive functions, predictability differences between groups
emerged. Nonverbal cognitive measures could be better pre-
dicted in the younger (R? range=-0.09 to 0.07) compared to
the older group (R? range=-0.12 to 0.03) and best predicted in
the total sample (R? range =0.05-0.22, Figure 3A, Tables S8-
S15) across modalities, feature sets, and algorithms. In the total
sample, processing speed and visual working memory could
be predicted to a greater extent from SC (R? range =0.13-0.22)
compared to FC (R? range =0.05-0.19, Figure 3A, Tables S8-
S15) and from whole brain (R? range =0.10-0.22) compared to
network-specific (R? range =0.05-0.20, Figure 3A, Tables S8-
S15) information across algorithms and feature sets. In the
younger and older group, differences between modalities (FC:
R?range: —0.12 t0 0.03; SC: R? range = —0.07 to 0.07) and feature
sets (network-specific: R? range=-0.12 to 0.07; whole-brain:
R? range =—0.11 to 0.06; see Figure 3B,C, Tables S8-S15) were
found to be marginal. Hence, it seemed that nonverbal cogni-
tive abilities could be moderately predicted from SC and FC data
across analytic choices. This was particularly evident for the
total sample and the younger group. In the older group, predic-
tion performance was found to be rather limited.

3.6 | The Impact of Demographic Variables on ML
Predictions

To assess the impact of demographic variables, that is, age,
sex, and education, on ML predictions, we included them as
features in our ML models. Particularly, we investigated the
predictability of cognitive targets from only demographic vari-
ables and in conjunction with brain features (Figure 4). Across
analytic options, that is, algorithms and age groups, demo-
graphic variables could moderately predict vocabulary (R?
range =0.18-0.23), verbal functions (R? range =0.18-0.21), pro-
cessing speed (R? range =0.11-0.33) and visual working memory
(R? range =0.16-0.39, Figure 4 (1) and Tables S8-S16). In con-
trast, verbal fluency, that is, SF, PF, and VF, could be predicted
to a smaller extent from age, sex, and education across groups
and algorithms (R? range =—0.04 to 0.13, see Figure 4 (1) and
Tables S8-S16). Combining brain features and demographics did
not seem to improve prediction performance (only demograph-
ics: R? range =—0.04 to 0.39; demographics and brain features:
R? range =-0.21 to 0.37, Figure 4 (2) and Tables S8-S16). Along
the same lines, currently employed brain features do not seem to
add information beyond that of demographic features to the pre-
diction of different cognitive measures. Furthermore, it poten-
tially hints at the fact that not all cognitive functions are equally
impacted by demographic variables.

3.7 | Validation Analyses

To validate our ML pipeline, we performed age and sex predic-
tions using the same method as in the main analysis. Across
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FIGURE2 | Prediction results for language performance tests. The mean coefficient of determination (R?) across folds is displayed for the predic-
tion of verbal performance, that is, semantic fluency (SF), phonematic fluency (SF), combined verbal fluency (VF), vocabulary (VOC) and combined
verbal functions (VER), from brain connectivity data, that is, FC (red) and SC (blue), in the default mode network (DMN), frontoparietal network
(FPN), in both the FPN and DMN (FPNDMN), and in the whole brain (WHOLE). Results are shown separately for the total [A], old [B], and the
young [C] samples. Error bars represent the standard deviation (SD). The following algorithms were used for prediction: Elastic Net (EN) regression
and linear Support Vector Regression (SVR). The grey shaded area indicates prediction performance R?>0.1.

algorithms, modalities, and age groups, most feature sets suc- based on the whole brain (R? range=0.05-0.72), followed by
cessfully predicted age (R? range=-0.04 to 0.72). In this con- the combination of FPN and DMN (R? range =0.03-0.62), the
text, we found that the highest prediction performance was DMN (R? range =0-0.60), and the FPN (R? range=-0.04 to
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FIGURE3 | Prediction results for nonverbal cognitive tests. The mean coefficient of determination (R?) across folds is displayed for the prediction

of processing speed, that is, TMT-A performance, and visual working memory, that is, vWM, from brain connectivity data, that is, FC (red) and SC
(blue), in the default mode network (DMN), frontoparietal network (FPN), in both the FPN and DMN (FPNDMN) and in the whole brain (WHOLE).
Results are shown separately for the total [A], old [B], and the young [C] samples. Error bars represent the standard deviation (SD). The following

algorithms were used for prediction: Elastic Net (EN) regression and linear Support Vector Regression (SVR). The grey shaded area indicates predic-

tion performance R?>0.1.

0.52; Table S17). Furthermore, SC tended to outperform FC in
predicting age (FC: R? range = —0.04 to 0.48; SC: R?=0.21-0.72;
Table S17). Additionally, better prediction results were ob-
served in the total group (R? range =0.25-0.72) followed by the
younger group (R? range =-0.04 to 0.45), and the older group
(R? range =0.01-0.37; Table S17). Turning to the sex classifica-
tion, we found that generally between 57.8% and 86.7% of cases
were classified correctly, which is in line with what has been
reported in the literature (Dhamala et al. 2020; Weis et al. 2020).
Best prediction accuracies could be achieved when predicting
from the whole-brain connectome (Acc. range =68.6%-86.7%)
compared to network-specific information (Acc. range = 57.8%-
83.0%) and from SC (Acc. range = 72.5%-86.7%) compared to FC
(Acc. range = 57.8%-72.5%; Table S18). Overall, both age and sex
could be predicted to similar extents in the current study as re-
ported in prior literature. Thus, it appeared that low prediction
accuracies in the main analysis are most likely not rooted in the
currently chosen ML framework. It is more likely that low ac-
curacies seem to be specific to the prediction of language func-
tion, their specific representation, or their relation to selected
networks or currently chosen brain connectivity data. To vali-
date our results from the main analyses, we further performed
extreme group classifications based on the different verbal abil-
ities in the total, younger, and older samples. Results further

corroborated the findings from the main analyses. Overall, low
classification accuracies were found across extreme groups in all
three samples (Acc. range =44%-65%). There was a slight trend
for SC data (Acc. range =44%-65%) leading to higher accuracies
than FC data (Acc. range =44%-61%; Tables S19-S23). No large
differences emerged between samples. Thus, results emphasize
the challenging nature of predicting or classifying language abil-
ities based on currently chosen input data. To assess the impact
of parcellation granularity, we additionally investigated whether
using a more fine-grained parcellation (i.e., 800-node Schaefer
parcellation) might have an impact on prediction results. Results
highlighted that language abilities could be predicted to a sim-
ilar degree from FC and SC data from both the 400-node and
800-node parcellations in the network-specific approach in the
total sample (800-node: R? range =—0.24 to 0.05; 400-node: R?
range =-0.13 to 0.03; Tables S24 and S25). For nonverbal abil-
ities, greater predictability could be observed in the 800-node
parcellation, particularly based on data from the FPN, for both
FC and SC data compared to the 400-node parcellation (800-
node: R? range =—0.24 to 0.34; 400-node: R? range =0.05-0.22;
Tables S24 and S25). In this context, results, however, were also
found to be more variable. Thus, these results support the general
notion from the main analyses, particularly for verbal abilities,
and extend it to another granularity. Beyond that, results further
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FIGURE4 | Prediction results for nonverbal and verbal cognitive tests from demographic variables [1], that is, age, sex, and education, and from
demographic variables and brain data, that is, FC (red) and SC (blue) [2] in the different feature sets, that is, DMN, FPN, FPNDMN, and WHOLE
brain, across samples, that is, total [A], old [B], and young [C]. Error bars represent the standard deviation (SD). The following algorithms were used
for prediction: Elastic Net (EN) regression and linear Support Vector Regression (SVR). The grey shaded area indicates prediction performance
R?>0.1.

emphasized that the choice of parcellation may have an impact by running separate ML analyses on connectivity data from the
on the magnitude of the results. In the next step, we analyzed right and left hemispheres. Results suggested that connectivity
the impact of hemispheric specialization on prediction results data from the left and right hemispheres yield similar results
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across cognitive tests and samples (FC: Language abilities: Left
hemisphere: R? range=-0.19 to 0.02, Right hemisphere: R?
range =—0.26 to 0.05; Nonverbal abilities: Left hemisphere: R?
range=-0.11 to 0.18, Right hemisphere: R? range=-0.20 to
0.17; SC: Language abilities: Left hemisphere: R? range =—-0.21
to 0.05, Right hemisphere: R? range =—0.18 to 0.04; Nonverbal
abilities: Left hemisphere: R? range=-0.12 to 0.23, Right
hemisphere: R? range=-0.11 to 0.21; see Tables S26-S29).
Furthermore, results were found to be comparable to the main
analyses with regard to the R? (Nonverbal: R? range=—0.12 to
0.22; Verbal: R? range =—0.24 to 0.03). Thus, prediction results
in the main analyses appeared to not be driven by one specific
hemisphere, but instead, both hemispheres seemed to provide
similar levels of information for the prediction. Finally, we ex-
amined the impact of eTIV on the prediction by running addi-
tional ML analyses controlling for it. Findings suggested similar
levels of prediction performance to those in the main analy-
ses across samples, cognitive tests, and input data (Controlled
for eTIV: FC: Verbal: R? range=-0.24 to 0.03, Nonverbal: R?
range=-0.09 to 0.15; SC: Verbal: R? range=-0.12 to 0.04,
Nonverbal: R? range = —0.03 to 0.23; Not controlled for eTIV: FC:
Verbal: R? range=-0.24 to 0.03, Nonverbal: R?> range =—0.12
to 0.19; SC: Verbal: R? range=-0.15 to 0.03, Nonverbal: R?
range =—0.07 to 0.22; Tables S30 and S31). Thus, results empha-
sized that eTIV may only have a marginal impact on prediction
results in the current study.

4 | Discussion

The current study aimed at investigating the predictability of ver-
bal abilities based on connectivity data [FC and SC data] from
two domain-general cognitive networks previously related to lan-
guage performance [FPN and DMN] and the whole-brain across
the lifespan. Overall, results showed that language functions
assessed with two distinct tests could not be reliably predicted
from FC and SC data across feature sets and age groups in a large
sample of individuals from the 1000BRAINS study. As such, no
predictability differences emerged between distinct verbal tests
based on currently employed brain features across the life span.
In contrast to verbal functions, nonverbal cognitive abilities, that
is, processing speed and visual working memory, could be mod-
erately predicted from connectivity data, particularly SC, in the
total and younger-aged groups, but not in the older-aged group
across feature sets. Thus, our results highlight the overall chal-
lenges in predicting cognitive abilities in older adults.

In recent years, different cognitive abilities were found to be suc-
cessfully predicted from connectivity data in younger and older
adults (Dhamala et al. 2021; Dubois et al. 2018; Finn et al. 2015;
Kwak et al. 2021; Li et al. 2020; Pldschke et al. 2020). Among
these, there have also been promising findings for language abil-
ities (Dhamala et al. 2021; Jiang et al. 2020a; Kwak et al. 2021;
Rasero et al. 2021; Tomasi and Volkow 2020). Nevertheless,
there are also initial findings showing that language abilities
captured by a composite score may be predicted to a smaller ex-
tent or with lower accuracies from structural connectivity data
compared to executive functions and global cognition across the
lifespan (age range: 36-100years; Feng et al. 2022). Results in
the current study support these latter results and extend them to
the prediction of language functions measured by two distinct

tests capturing verbal knowledge and fluency from both FC and
SC data in specific networks and the whole brain in younger
and older adults from the 1000BRAINS study. One potential
explanation for the limited predictability of verbal functions in
the current study compared to early promising findings in the
literature may pertain to the sample composition. Successful
prediction results have been mainly reported for samples de-
rived from the HCP (age range: 22-37years) or for samples that
also included cognitively impaired individuals (OASIS-3; age
range =42-95years; Dhamala et al. 2021; Jiang et al. 2020a;
Kwak et al. 2021; Rasero et al. 2021; Tomasi and Volkow 2020).
The current study included participants spanning an age range
between 18 and 85years from a population-based cohort,
1000BRAINS, from Western Germany. As such, the samples
used in prior studies may differ quite substantially from the
currently employed lifespan sample. Additionally, prior studies
have mostly used two different language scores as prediction
targets, for example, picture vocabulary and oral reading recog-
nition from the NIH toolbox, which may not exactly assess the
same abilities as in the current analyses (Dhamala et al. 2021;
Jiang et al. 2020a; Rasero et al. 2021; Tomasi and Volkow 2020).
It may be the case that these abilities may be better predicted by
connectivity data than the ones selected in the current study.
Furthermore, it should be accentuated that most prior studies
have relied on a whole-brain approach instead of investigating
specific networks for prediction.

Across analytic choices, language abilities could not be reliably
predicted from connectivity data in the present study. This was
the case for both single verbal test performance and composite
verbal measures. Limited prediction results of the verbal com-
posite measures might have been partially driven by an entan-
glement of fluid and crystallized abilities. Nevertheless, on their
own, both fluid and crystallized verbal components similarly
yielded limited prediction accuracies. In general, these findings
pertained specifically to language functions and did not gener-
alize to other cognitive functions, for example, processing speed
and visual working memory, and demographic factors. As such,
it may be argued that language functions as a cognitive domain
appear to be challenging to predict from the currently chosen
brain features in younger and older adults, leading to mixed re-
sults across the field, ML approaches, and samples. Results from
the validation analyses aiming at extreme group classifications
based on verbal functions further support this argument.

One potential explanation for the mixed results across the liter-
ature in terms of the predictability of language functions may
relate to the potential influence of other factors on performance
levels, for example, educational level, executive functions ca-
pabilities, and hormonal levels, obscuring the link between
language functions and brain features, leading to a less pro-
nounced encoding of language abilities in connectivity data
and a stronger association with these other factors (Amunts
et al. 2020; Fedorenko and Thompson-Schill 2014; Griksiene
and Ruksenas 2011; Guichet et al. 2024; Opdebeeck et al. 2016).
The chosen brain connectivity features might not have carried
sufficient information for discerning language performance dif-
ferences in our sample, while other factors might potentially be
more useful for prediction instead. Thus, it appears worthwhile
to consider these other factors in future language prediction
studies across the lifespan.
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Another point to consider in this context is the operationalization
of language functions across studies. Building upon one neuro-
psychological test for assessing verbal fluency and vocabulary
knowledge, as done in this as well as various other studies (Cui
etal. 2018; Kwak et al. 2021; Tomasi and Volkow 2020) might un-
derestimate the complex and comprehensive nature of language
abilities (Desai and Ricciardi 2021). Future research is needed
to understand the predictive power of more extensive language
paradigms tapping into the comprehension and production of,
for example, whole sentences (Desai and Ricciardi 2021). Thus,
it appears advisable to use a more diverse set of different neuro-
psychological tests or natural speech decodings in the future to
more completely capture language functioning.

Verbal fluency and vocabulary knowledge have been suggested
to follow different aging trajectories and to be associated with
different brain regions and circuits (Hedden and Gabrieli 2004;
Salthouse et al. 2003). This, in turn, may also hint at potential
predictability differences between the two constructs based on
imaging data. Against this initial assumption, no predictability
differences emerged for vocabulary knowledge and production
using brain features as input information in the current study.
Instead, low prediction performance could be observed based on
FC and SC data for both. Differences in predictability between
vocabulary and verbal fluency surfaced only in the additional
analyses using the demographic variables as input features. In
this case, vocabulary could be successfully predicted from age,
sex, and education (R? range =0.18-0.23), while for verbal flu-
ency a moderate level of prediction performance could only be
partially reached (R? range = —0.04 to 0.13). As such, it appeared
that verbal fluency is less influenced by age, sex, and education.
Thus, it may be the case that other factors may explain a relevant
portion of the variance in verbal fluency not considered in the
current analyses. One potential candidate in this context may be
executive functioning, which has been related to verbal fluency
performance and has even been found to successfully predict
verbal fluency scores (Amunts et al. 2020). Hence, it should be
pointed out that verbal fluency and vocabulary knowledge not
only seem to relate differently to brain parameters but also to
nonbrain factors, which might influence prediction results.

Cognition may be viewed as a multidimensional construct
composed of different domains (e.g., language being one) and
specialized forms of processing. Given that cognitive functions
are not a unitary concept and differentially relate to the brain,
predictability differences between cognitive functions may
emerge from imaging data (Harvey et al. 2019), which we also
addressed in the current study. Results from the present inves-
tigation revealed that nonverbal cognitive functions could be
moderately predicted across analytic choices compared to the
poor prediction performance for language functions. Prediction
performance, however, did not exceed 10% explained variance
(R?) (correlation between true and predicted scores: r<0.28)
for nonverbal cognitive functions in the younger and older
groups in the current study. Only in the total sample was pre-
diction performance for nonverbal functions found to be larger
than R?>>0.1 (correlation between true and predicted scores:
r<0.47) for some modality, feature, and algorithm combina-
tions. These results correspond to recent findings reported in
the literature across different samples, particularly based on FC
data (Avery et al. 2020; Ferguson et al. 2017; Greene et al. 2018;

He et al. 2020; Heckner et al. 2023; Kraljevi¢ et al. 2024; Kwak
et al. 2021). For example, processing speed, working memory,
and fluid intelligence were predicted with a prediction accuracy
(r) between 0.11 and 0.31 in younger and older adults from whole-
brain FC in multiple different samples across the life span (e.g.,
HCP cohort, OASIS-3 cohort, Philadelphia Neurodevelopmental
Cohort; Ferguson et al. 2017; He et al. 2020; Heckner et al. 2023;
Kwak et al. 2021). Current results extend these prior findings to
the modality of SC and emphasize that it remains unclear what
amount of variance in cognition can actually be predicted from
currently employed brain features (Easley et al. 2023; Genon
et al. 2022; Schulz et al. 2022; Woo et al. 2017). Differences be-
tween samples, total versus younger and older groups, may be
related to the larger sample size leading to an increase in signal
and the addition of valuable variability from young to old that
may result in clearer patterns of brain-behavior relationships
ultimately enhancing the accuracy of the predictive models. As
such, it may be argued that nonverbal cognitive functions may
be predicted to a greater extent from connectivity data than
verbal functions in a large sample across the life span from the
1000BRAINS study, whereas achieving reliable and highly ac-
curate predictions, particularly in older adults in the realm of
cognition remains challenging.

Brain structure and function undergo manifold changes during
the aging process, which are typically accompanied by age-
related cognitive decline (Hedden and Gabrieli 2004). Given
that aging is a time of tremendous changes, the nature of brain-
behavior relationships may also be altered, leading to potential
predictability differences in cognitive abilities between younger
and older adults. Thus, we further investigated prediction per-
formance in a younger and older age group in the current study.
While no age group effects were encountered for language
functions due to overall nonsuccessful prediction, differences
between age groups emerged for the nonverbal cognitive func-
tions, particularly based on SC data. In more detail, it was ob-
served that 4% more variance could be explained in nonverbal
cognitive measures in the younger (max. R?=0.07) compared
to the older group (max. R%: 0.03). These results provide further
support to prior studies hinting at higher predictability of spe-
cific cognitive functions in younger individuals and the chal-
lenging nature of individual-level predictions in older adults
(Kandaleft et al. 2022; Omidvarnia et al. 2024). For instance,
Kandaleft et al. (2022) found that intelligence could be pre-
dicted in younger adults, but not in middle-aged or older adults.
Similarly, limited prediction power of different cognitive abili-
ties (r<0.25) based on rsfMRI parameters has been observed in
a large sample from the UK Biobank (Omidvarnia et al. 2024).
Hence, it may be reasoned that the higher inter-individual vari-
ability in older adults may challenge concepts of a clear brain-
behavior relationship, leading to lower prediction performance.
Nevertheless, it should also be mentioned in this context that
there are some studies reporting better prediction of cognitive
functions, for example, executive functions and working mem-
ory, in older compared to younger adults from connectivity data
(Heckner et al. 2023; Pldaschke et al. 2020). Differences in re-
sults between these findings and the current study could relate
to differences in sample size. While both Heckner et al. (2023)
and Pldschke et al. (2020) used relatively small samples, that
is, N<120, current analyses were based on data from N> 700
individuals allowing for a more realistic approximation of true
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predictability (Marek et al. 2022). Thus, it may be argued that
cognition prediction may not perform equally well across the
lifespan but may differ between younger and older age groups.

Specific cognitive functions may be related to processing in cir-
cumscribed brain networks. In this context, prior research has
suggested that the FPN and DMN may be particularly related
to cognitive control, working memory, attention, language abil-
ities, and higher-order cognition across the life span (Chenot
et al. 2021; Smallwood et al. 2021; Zanto and Gazzaley 2013).
Based on univariate findings showing links between specific
behavioral constructs and networks in the literature, various
prediction studies have taken up on this point and evaluated
prediction performance differences arising from using brain
features from specific relevant networks compared to those
from the whole brain (Heckner et al. 2023; Nostro et al. 2018;
Pldschke et al. 2020). Focusing on specific relevant features
might also reduce the potential drawbacks of the curse of di-
mensionality, where a high number of data dimensions in rela-
tion to a lower number of datapoints can lead to reduced model
performance. Following this and the initially partly promising
univariate results in the current study, we here investigated
prediction performance from connectivity information in two
networks [DMN and FPN] that have been frequently associ-
ated with a diverse set of cognitive functions and compared it
to a whole brain approach (Mwangi et al. 2014). For those ML
models with moderate prediction performance, it appeared that
network-specific models did not outperform the whole-brain ap-
proach in the current setup. Even a slight advantage for the whole
brain approach could be observed across algorithms, modali-
ties, and targets (network-specific: max R?=0.20; whole brain:
max R?=0.22), which is in line with recent findings showing
that whole brain information led to better cognitive prediction
results than network-specific FC (Heckner et al. 2023). Thus, it
may be argued that a single network perspective may leave out
relevant information that may be available from the whole brain
or the network perspective is not specific enough to effectively
boost prediction performance. Hence, it may be advisable in pro-
spective studies to compare different approaches to choose the
one that best describes the specific data. Interestingly, the here
investigated network-specific information showed differential
capability of predicting specific cognitive functions: While non-
verbal cognitive performances were to a certain degree predict-
able, language abilities were not, even though we selected these
networks as they have been frequently associated with a diverse
set of cognitive functions. The current results, however, rather
point to a stronger association with nonverbal than verbal cog-
nitive functions across the two hemispheres.

ML performance may be impacted by different factors, includ-
ing confounding variables, for example, age, sex, and education.
To assess their contribution to the current results, we performed
additional confounder analyses and used demographic factors
as input features to ML (Dadi et al. 2021; Krdmer et al. 2024;
Rasero et al. 2021). Analyses were performed based on these
features alone and in conjunction with brain features. Results
highlighted a general trend for increases in prediction accu-
racy (R?) for models based on demographic variables alone and
jointly with brain features. This is in line with prior studies
showing significant improvements in prediction performance
when demographic variables were included in ML models (Dadi

et al. 2021; Rasero et al. 2021; Vieira et al. 2022). In this con-
text, it should be accentuated that adding brain features to the
demographic factors did not further improve ML performance,
which corresponds to prior findings in the 1000BRAINS study
and the UK Biobank and extends it to different cognitive targets
and age groups (Krdmer et al. 2024; Omidvarnia et al. 2024).
Thus, it appeared that brain features only explained a small
amount of variability in the data and were clearly outperformed
by demographic data. It should, nevertheless, be pointed out that
differences emerged across cognitive variables, input data, and
samples, even if these effects were small. Furthermore, attention
should be drawn to the fact that demographic factors improved
prediction accuracies to different degrees across cognitive tar-
gets. The main exception arose for verbal fluency, which could
only be predicted with a maximum accuracy of R?=0.13 from
demographic factors compared to up to R?=0.39 for visual
working memory. Thus, it appears that verbal fluency may be
more strongly linked to other factors not part of this analysis.
Simultaneously, it may be argued that age, sex, and education
may have a substantial influence on ML prediction performance
in younger and older adults; however, not across all cognitive
targets. Hence, to improve the prediction performance of cogni-
tive outcomes, it appears fruitful to consider confounding vari-
ables like demographic factors in ML models across the lifespan
and to examine their relation to different cognitive targets also
using other cohort data.

4.1 | Limitations and Methodological
Considerations

The current study concentrated on the prediction of verbal cog-
nitive functions based on SC and FC data. Overall, prediction
performance across all verbal and nonverbal cognitive measures
remained fairly limited. In future studies, it, thus, might be ad-
visable to include other input modalities, for example, task-based
or dynamic functional connectivity (Jiang et al. 2020b), or to
use a multimodal approach (Niu et al. 2020; Rasero et al. 2021;
Vieira et al. 2022). Furthermore, as it remains open to what
extent brain data may be helpful in the prediction of cognitive
measures, other nonimaging data may be added to prediction
models to boost performance and disentangle the individual
contributions of each factor (Murdaca et al. 2021). In this realm,
it may also become relevant to include additional steps in the
ML pipeline beyond the embedded feature selection in Elastic
Net regression to reduce the feature space and, with it, the po-
tential issues arising due to high dimensionality. It might be par-
ticularly advisable to compare prediction performance across a
range of different dimensionality reduction techniques, such
as principal component analysis (PCA), and filter and wrapper
techniques, to select the most meaningful features for prediction
(Jollans et al. 2019).

Another methodological aspect to consider is the choice of par-
cellation, which has been found to exert an influence on ML
prediction performance (Dhamala et al. 2021, 2023; Mellema
et al. 2022). In the current study, we opted for the functionally
derived 400-node Schaefer parcellation for both FC and SC, as it
allows comparability across modalities and has been frequently
employed in ML cognition prediction studies and studies across
the life span (Schaefer et al. 2018; Yeo et al. 2011). To assess the
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impact of parcellation resolution, we further assessed the impact
of using connectivity data derived from the 800-node Schaefer
parcellation in the prediction. In the direct comparison to the
400-node parcellation, results were found to show only small dif-
ferences, particularly for verbal abilities. Nevertheless, it should
be pointed out that subcortical and cerebellar regions, which
have been shown to be relevant for cognitive processing, have
not been included in the current study and thus could be consid-
ered in future studies (Jobson et al. 2024; Turker et al. 2023; Weis
et al. 2020). Furthermore, as pointed out above, it would be desir-
able for future studies to investigate different operationalizations
of language functions to tackle their complex and comprehen-
sive nature (Desai and Ricciardi 2021), as well as examine their
retest reliability to exclude state effects (Gell et al. 2024).

5 | Conclusions

In the current study, we investigated if language abilities, that
is, verbal fluency and vocabulary knowledge, may be predicted
based on structural and functional connectivity data in the FPN,
DMN, and the whole brain across the lifespan using data from
the 1000BRAINS cohort. We found that neither vocabulary
knowledge nor verbal fluency could be successfully predicted in
the current sample. This result was found to be consistent across
modalities [FC and SC], feature sets [DMN, FPN, DMN-FPN,
whole brain], algorithms [EN and SVR], and age [total, younger,
and older aged] groups. Low prediction results were found to be
circumscribed to language functions, as other nonverbal func-
tions could be moderately predicted, particularly in the total and
younger age group. Thus, the findings underscore the distinct
role of language abilities among cognitive functions and suggest
that factors beyond brain connectivity may significantly influ-
ence differences in language performance. To sum up, our re-
sults stressed that verbal and nonverbal cognitive functions may
differ in their predictability from specific brain network patterns
across the life span. This may be due to the networks chosen, the
reliance on other factors interfering with that of brain patterns,
as well as different processing streams in verbal and nonverbal
cognitive functions. Prospective studies should further investi-
gate this and expand on results in younger and older adults.
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